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Abstract
We show that weighted unitary 2-designs define optimal measurements on the
system-ancilla output state for ancilla-assisted process tomography of unital
quantum channels. Examples include complete sets of mutually unbiased
unitary-operator bases. Each of these specifies a minimal series of optimal
orthogonal measurements. General quantum channels are also considered.

PACS numbers: 03.65.Wj, 03.67.−a, 02.10.Ox

1. Introduction

Fundamental to the fabrication of quantum information processing devices [1], such as
quantum teleporters, key distributors, cloners, gates, and indeed, quantum computers, is
the ability to precisely determine an unknown transformation on a quantum system. Quality
assurance requires a complete characterization of these devices, which can be accomplished
through a procedure known as quantum process tomography [2]: for judicious choices of initial
system states, the transformation is uniquely identified by the outcomes of measurements on
the transformed states.

The approach of ancilla-assisted quantum process tomography [3, 4] is to encode all
information about the transformation into a single bipartite system-ancilla quantum state, and
thus completely reduce the problem to that of quantum state tomography [2]. A sequence
of measurements on identically prepared copies of this state will then reveal the particular
transformation under examination. It is known that, for linear tomographic reconstructions of
general quantum states, the most robust measurements against statistical error are described
by tight informationally complete positive-operator-valued measures (tight IC-POVMs) [5].
Such measures derive their name from a related concept in frame theory, called a tight frame
[6], and are equivalent to weighted complex projective 2-designs [5, 7–9].
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The nonselective evolution of an open quantum system is described by a completely
positive, trace preserving, linear transformation on quantum states. Such transformations
are called quantum channels within the context of quantum information theory [1], as they
also describe the degradation of information encoded in quantum states after transmission
through a noisy communication channel. A unital quantum channel is one which fixes the
maximally mixed state. These include all probabilistic applications of unitary operators,
and thus, within the context of process tomography, form the relevant subclass of channels
describing closed-system quantum dynamics.

In this paper, we study ancilla-assisted process tomography of general and unital quantum
channels. The possible system-ancilla output states of relevance are then naturally housed in
proper convex subsets of the set of all quantum states, and thus permit optimizations of the
measurement over that necessary to identify a general quantum state. We find that the most
robust measurements against statistical error, when they exist, are again described by tight
POVMs, though a generalization thereof. In the unital case, these POVMs are equivalent to
weighted unitary 2-designs [10, 11], but in the general case, they are shown not to exist.

This paper is organized as follows. Sections 2 and 3 review quantum process and state
tomography, respectively, paying particular attention to the pertinent case of ancilla-assisted
process tomography of quantum channels. Section 4 generalizes results of [5], characterizing
the structure of POVMs that are optimal for linear quantum state tomography when a member
of a convex subset of all possible quantum states need only be distinguished from other
members. In section 5, we introduce the concept of a weighted unitary t-design, reviewing
known results and presenting new ones. Finally, in section 6 we make the connection between
weighted unitary 2-designs and the POVMs that optimize ancilla-assisted process tomography
of unital quantum channels. The paper then concludes in section 7 where open problems
are discussed. In addition, an appendix sets the superoperator notation used throughout this
paper by reviewing a general class of transformations on quantum systems called quantum
operations.

2. Quantum process tomography

The purpose of this paper is to optimize the measurements used for ancilla-assisted process
tomography of quantum channels, and in particular, unital quantum channels. Quantum
channels are nonselective quantum operations. The appendix provides some background to
this broad class of transformations on quantum systems and introduces important concepts
and notations relevant to the current study of channels. We will proceed by first describing
process tomography for unitary operations. This will lead naturally into that for channels.

The dynamical evolution of a closed quantum system Hs = Cd is described by a unitary
operator U ∈ U(d). In the absence of any physical description of the system, we expect that
the Haar probability measure µ on U(d) most accurately reflects our state of knowledge of U.
One method to determine U is then to couple Hs to an auxiliary system Ha = Cda (called the
ancilla) and allow the combined system Hs ⊗ Ha to evolve from some initially known state,
ρi say, to

ρ = (U ⊗ I )ρi(U
† ⊗ I ). (2.1)

A measurement on the combined system will then provide information on U. By repeating
this procedure many times over, perhaps on different input states, U can be determined
completely. This method of determining quantum dynamics is called quantum process
tomography. Although the ancilla could be removed if the initial state were varied, in this
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paper we investigate the opposite extreme by choosing da = d and then ρi = |I 〉〈I |, fixed,
where for any V ∈ U(d) we define

|V 〉 = (V ⊗ I )|I 〉 := 1√
d

∑
k

V |k〉 ⊗ |k〉. (2.2)

The pure state |V 〉〈V | is a maximally entangled state of Hs ⊗ Ha, and in fact, all maximally
entangled states can be written in this form. The output state is ρ = |U 〉〈U |. Note that U
can be found from |U 〉 (and vice versa) through the relation 〈j |U |k〉 = √

d(〈j | ⊗ 〈k|)|U 〉, a
special case of the Jamiołkowski isomorphism below.

The determination of an unknown unitary U is thus equivalent to the determination of an
unknown maximally entangled state |U 〉. The latter can be accomplished through quantum
state tomography. It is unrealistic, however, to presume that each system evolution in the
above tomographic procedure can be performed identically. The class of quantum states under
examination should thus be broadened to include any classical mixture of maximally entangled
states: ρ = ∑

k rk|Uk〉〈Uk|, where each rk > 0 and
∑

k rk = 1. This is the output state of a
quantum channel.

The (nonselective) evolution of an open quantum system is described by a quantum
channel, i.e., a superoperator E ∈ End(End(Cd)) which is both trace preserving and completely
positive (see the appendix). The channel is said to be unital if it fixes the maximally mixed
state: E(I ) = I . Unital channels include all unitary operations U � U †, and moreover, all
random-unitary channels, i.e., those which can be implemented by probabilistic applications
of unitary operators (as above): E = ∑

k rkUk � Uk
†. In dimensions d � 3, however, there

exist unital channels which cannot be decomposed in this way [12]. Although random-unitary
channels are those channels which are most relevant to the study of closed-system dynamics,
within this context, we will consider the entire class of unital channels together.

The process tomography of a quantum channel follows that for a unitary operator. The
output state corresponding to the input ρi = |I 〉〈I | completely determines the channel:

ρ = (E ⊗ I)(ρi) ↔ E = d
∑

j,k,l,m

tr[(|m〉〈j | ⊗ |l〉〈k|)ρ]|j 〉〈k| � |l〉〈m|. (2.3)

This is the so-called Jamiołkowski isomorphism [13]. It is important that the basis used in the
right-hand side (RHS) of equation (2.3) is that in the definition of |I 〉〈I |. Note that

trs(ρ) = 1

d

∑
j,k

tr[E(|j 〉〈k|)]|j 〉〈k| = 1

d

∑
j,k

tr[|j 〉〈k|]|j 〉〈k| = 1

d
I, (2.4)

since all quantum channels are trace preserving, and additionally,

tra(ρ) = 1

d

∑
j,k

E(|j 〉〈k|)tr[|j 〉〈k|] = 1

d
E(I ) = 1

d
I, (2.5)

for unital channels. This means that the classes of output states of quantum channels, with
fixed input ρi = |I 〉〈I |, do not include all types of quantum states. The same could not be said
if E were trace decreasing, i.e., a path of a general quantum operation. Denote by

Q(H) := {A ∈ End(H)|A � 0, tr(A) = 1} (2.6)

the set of all quantum states for H. The two convex subsets of Q(Hs ⊗ Ha),

Qgc := {ρ ∈ Q(Hs ⊗ Ha)|trs(ρ) = I/d} and (2.7)

Quc := {ρ ∈ Q(Hs ⊗ Ha)|trs(ρ) = tra(ρ) = I/d}, (2.8)

then correspond to the outputs of, respectively, general and unital quantum channels.
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Let {λk}d2−1
k=0 be an orthonormal Hermitian operator basis for End(Cd) with the choice

λ0 = I/
√

d. The remaining operators, λ1, . . . , λd2−1, then span the (d2 − 1)-dimensional
subspace of traceless operators tr(λk) = √

d tr(λ0λk) = 0 for all k > 0. Every quantum state
for H = Cd ⊗ Cd is of course expressible in terms of this basis:

ρ =
∑
j,k

rjkλj ⊗ λk. (2.9)

The coefficients must be real, rjk ∈ R, but besides positivity of the state, the only other
constraint is from normalization: r00 = 1/d. In contrast, the output state ρ ∈ Qgc has r0k = 0
for all k > 0 and in the unital case, ρ ∈ Quc has rk0 = r0k = 0 for all k > 0. The number
of outcomes of a measuring instrument capable of identifying one such output from within
its class of output states can thus be reduced from d4, the number necessary to identify a
general quantum state, to d2(d2 − 1) + 1 for general channels, or (d2 − 1)2 + 1 for unital
channels. Ancilla-assisted process tomography of quantum channels is thus not equivalent to
tomographic reconstructions of general system-ancilla quantum states.

We will conclude this section by describing how quantum states are naturally embedded
in Euclidean space. This approach will later provide insight when we harness the concepts
of frame theory. Embedded in the complex vector space End(H) is a real vector space of
Hermitian operators

H(H) := {A ∈ End(H)|A† = A}. (2.10)

Equipped with the Hilbert–Schmidt inner product inherited from End(H), (A|B) := tr(A†B),
which induces the Frobenius norm, ‖A‖ := √

(A|A), the vector space H(H) forms a real
Hilbert space: H(CD) ∼= RD2

. Within the context of ancilla-assisted process tomography it
will be assumed that H = Hs ⊗ Ha = Cd ⊗ Cd ∼= CD , i.e., D = d2. The above coefficients
rjk then define a canonical choice for the isomorphism to RD2

. Define the two subspaces

Hgc := {A ∈ H(Cd ⊗ Cd)|tr1(A) = tr(A)I/d} < H(CD), and, (2.11)

Huc := {A ∈ H(Cd ⊗ Cd)|tr1(A) = tr2(A) = tr(A)I/d} < Hgc < H(CD), (2.12)

which contain the convex sets Qgc and Quc, respectively, and have dimensions d2(d2 − 1) + 1
and (d2 − 1)2 + 1.

In general, Q(H) is naturally embedded into the vector subspace of H(H) consisting of
all traceless Hermitian operators

H0(H) := {A ∈ H(H)|tr(A) = 0} < H(H). (2.13)

Define

Π0 := I − 1

D
|I )(I | (2.14)

which projects onto H0(H). This projection defines an isometric embedding of Q(CD) into a
(D2 − 1)-dimensional real Hilbert space, Q(CD) ↪→ H0(C

D) ∼= RD2−1,

|ρ0) := Π0|ρ) = |ρ − I/D), (2.15)

in which the images of pure states lie on a sphere, ‖|ψ〉〈ψ | − I/D‖ = √
(D − 1)/D, and the

images of mixed states within. In the special case D = 2 the embedding is bijective into this
sphere, realizing the Bloch-sphere representation of a qubit, but is otherwise only injective.
By ‘isometric’ we mean that distances are preserved: ‖ρ0 − σ0‖ = ‖ρ − σ‖.

It is important to recognize that both Qgc and Quc are embedded into proper vector
subspaces of H0(C

D) under Π0:
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Qgc ↪→ Hgc
0 := Π0Hgc = {A ∈ H(Cd ⊗ Cd)|tr1(A) = 0}, and, (2.16)

Quc ↪→ Huc
0 := Π0Huc = {A ∈ H(Cd ⊗ Cd)|tr1(A) = tr2(A) = 0}. (2.17)

The dimensions of these subspaces are d2(d2 − 1) and (d2 − 1)2, respectively. In section 4,
we will show that POVMs corresponding to tight frames on these subspaces, if they exist, are
uniquely optimal for ancilla-assisted process tomography.

3. Quantum state tomography

This section serves as an introduction to quantum state tomography and is adapted from
[5, section 4]. Instead of using the complex vector space End(CD) ∼= CD2

as a backdrop,
however, we will use the embedded real vector space of Hermitian operators, H(CD) ∼= RD2

.
The outcome statistics of a quantum measurement on a system H = CD are described by a

positive-operator-valued measure (POVM) [14]. That is, an operator-valued function defined
on a σ -algebra over a set X of outcomes, F : B(X ) → H(H), which satisfies (1) F(E ) � 0
for all E ∈ B(X ) with equality if E = ∅, (2) F

(⋃∞
k=1 Ek

) = ∑∞
k=1 F(Ek) for any sequence

of disjoint sets Ek ∈ B(X ), and (3) the normalization constraint F(X ) = I . In this paper, we
always take B(X ) to be the Borel σ -algebra. When a quantum measurement has a countable
number of outcomes, the indexed set of POVM elements {F(x)}x∈X completely characterizes
F, and is thus often referred to as the ‘POVM’. We will call such POVMs discrete.

We will need to express an arbitrary POVM F in a standard form. To do this, note that
each POVM defines a natural scalar-valued trace measure τ(E ) := tr[F(E )], which inherits
the normalization τ(X ) = D. Since each matrix element of F is a complex-valued measure
which is absolutely continuous with respect to the non-negative finite measure τ , the POVM
can be expressed as

F(E ) =
∫

E
dτ(x)P (x), (3.1)

where the positive-operator-valued density (POVD) P : X → H(H) is uniquely defined
up to a set of zero τ -measure. The POVD P is of course the Radon–Nikodym derivative
of F with respect to τ . Note that tr(P ) = 1, τ -almost everywhere. If P also has unit rank,
τ -almost everywhere, then we call F a rank-1 POVM. In the special case of a discrete POVM,
P(x) = F(x)/τ(x).

An informationally complete POVM F [5, 15, 16] is one with the property that each
quantum state ρ is uniquely determined by its measurement statistics, p(E ) := tr[F(E )ρ]. A
sequence of measurements on copies of a system in an unknown state, enabling an estimate
of these statistics, will then reveal the state. This process is called quantum state tomography.

Definition 3.1. A POVM F : B(X ) → H(H) is called informationally complete with respect
to Q ⊆ Q(H) if for each pair of distinct quantum states ρ �= σ ∈ Q there exists an event
E ∈ B(X ) such that tr[F(E )ρ] �= tr[F(E )σ ]. A POVM which is informationally complete
with respect to Q(H) is called an informationally complete POVM (IC-POVM).

For an arbitrary POVM F, define the Hermitian superoperator F : H(H) → H(H) by

F :=
∫

X
dτ(x)|P(x))(P (x)|, (3.2)

which is positive and bounded under the left–right action. The latter follows from the fact that
Tr(F) = ∫

X dτ(x)(P (x)|P(x)) � D for any POVM, with equality only for rank-1 POVMs.
The image and coimage of a Hermitian superoperator are equal. We call this vector subspace

5



J. Phys. A: Math. Theor. 41 (2008) 055308 A J Scott

of H(H) the support of F and denote it by supp(F). Let span(Q) denote the subspace of
H(H) spanned by members of Q, and let ri(Q) denote the relative interior of Q, which is the
interior of Q as a subset of its affine hull. Now consider the following.

Proposition 3.2. Let F : B(X ) → H(H) be a POVM. Then F is informationally complete
w.r.t. Q ⊆ Q(H) if Q ⊆ supp(F). Moreover, if ri(Q) �= ∅, then F is informationally complete
w.r.t. Q if and only if Q ⊆ supp(F).

Proof. Let Q ⊆ supp(F). Then for the distinct quantum states ρ �= σ ∈ Q we have∫
X

dτ(x)|tr[P(x)(ρ − σ)]|2 = (ρ − σ |F |ρ − σ) > 0, (3.3)

since ρ − σ ∈ supp(F), being a vector subspace, and ρ − σ �= 0. Thus there must exist an
event E ∈ B(X ) with∫

E
dτ(x) tr[P(x)(ρ − σ)] �= 0, (3.4)

or equivalently, tr[F(E )ρ] �= tr[F(E )σ ]. This means F is informationally complete w.r.t. Q.
Now let F be informationally complete w.r.t. Q, let ri(Q) �= ∅, and suppose Q � supp(F).

There must then exist an operator A ∈ span(Q), A �= 0, such that

(A|F |A) =
∫

X
dτ(x)|tr[P(x)A]|2 = 0, (3.5)

which means tr(PA) = 0, τ -almost everywhere. This operator is therefore traceless:

tr(A) = tr[F(X )A] =
∫

X
dτ(x) tr[P(x)A] = 0. (3.6)

Now for any ρ ∈ ri(Q), if ε > 0 is chosen small enough, then σ = ρ + εA is also a member
of Q, and moreover, σ �= ρ with

tr[F(E )σ ] = tr[F(E )ρ] + ε

∫
E

dτ(x) tr[P(x)A] = tr[F(E )ρ] (3.7)

for all E ∈ B(X ). Thus F could not have been informationally complete w.r.t. Q. We must
therefore have Q ⊆ supp(F). �

This proposition is a straightforward but important observation. If a quantum state need
only be distinguished from other members of a given convex subset Q ⊆ Q(H), e.g. Qgc or
Quc, then since the relative interior of any convex set is nonempty, proposition 3.2 enables us
to focus on POVMs for which supp(F) ⊇ Q. Equivalently, it enables us to focus on POVMs
for which supp(F) � span(Q).

Note that any POVM F is informationally complete w.r.t. Q = supp(F) ∩ Q(H). With
this choice there is a standard procedure for reconstructing a member, ρ ∈ Q, in terms of its
measurement outcome statistics, p(E ) = tr[F(E )ρ]. Let F̃ be the unique superoperator with
supp(F̃) = supp(F) for which

F̃F = FF̃ = ΠF , (3.8)

where ΠF denotes the projector onto supp(F). Of course, F̃ = F−1 when Q = Q(H) (as in
[5]). Now defining

|R) := F̃ |P), (3.9)

the left–right action on |ρ) of the identity∫
X

dτ(x)|R(x))(P (x)| =
∫

X
dτ(x)F̃ |P(x))(P (x)| = F̃F = ΠF , (3.10)

6
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allows state reconstruction in terms of the measurement statistics:

ρ =
∫

X
dτ(x) tr[P(x)ρ]R(x) =

∫
X

tr[dF(x)ρ]R(x) =
∫

X
dp(x)R(x). (3.11)

Although the reconstruction operator-valued density R is generally not positive, it inherits
all other properties of P, i.e.

∫
X dτ(x)R(x) = I and tr(R) = 1 (see [5]). Finally, it is

straightforward to confirm that

F̃ =
∫

X
dτ(x)|R(x))(R(x)|. (3.12)

Although we could now proceed directly to an analysis of optimality, we will first briefly
show how to embed POVMs into Euclidean space, just as was done for quantum states. First
note that, for an arbitrary POVM F, the subspace H0(H) < H(H) is F-invariant, and in fact,

F = Π0FΠ0 +
1

D
|I )(I |, (3.13)

since the identity operator is always a left–right eigenvector with unit eigenvalue:

F |I ) =
∫

X
dτ(x)|P(x))(P (x)|I ) =

∫
X

dτ(x)|P(x)) =
∫

X
|dF(x)) = |I ). (3.14)

Although the projector |I )(I |/D is fixed by the normalization of F, its complement is free,

F0 := Π0FΠ0 = F − 1

D
|I )(I | =

∫
X

dτ(x)|P0(x))(P0(x)|, (3.15)

where we define

|P0) := Π0|P) = |P − I/D). (3.16)

It is the superoperator F0 which can be adjusted for optimality. The POVM is thus embedded
into H0(H),

|F0(E )) := Π0|F(E )) = |F(E ) − τ(E )I/D) =
∫

E
dτ(x)|P0(x)). (3.17)

This means tr(F0) = 0 and F0(X ) = 0. Note that our ‘embedding’ is anchored to the trace
measure, however, in that we cannot find F from F0 without knowledge of τ .

4. Optimal linear quantum state tomography

In this section, we decide which POVMs are the most robust against statistical error for linear
tomographic reconstructions of quantum states. Our premise is that a member of some subset
of all possible quantum states needs to be distinguished from other members. Although we
will focus on the two convex subsets, Qgc and Quc, being those sets relevant to the process
tomography of general and unital quantum channels, the following analysis will apply to other
convex subsets Q ⊆ Q(H) with similar properties. The choice Q = Q(H) was considered in
[5] and the following can be considered a generalization.

Let F be a POVM which is informationally complete w.r.t. Q ⊆ Q(H). Throughout this
section we assume a linear state-reconstruction formula valid for all ρ ∈ Q of the form

|ρ) =
∫

X
dp(x)|Q(x)) =

∫
X

(dF(x)|ρ)|Q(x)), (4.1)

where Q : X → span(Q) is called a reconstruction OVD. By linearity, this formula implicitly
presupposes that supp(F) � span(Q).

7
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It is instructive to start with the special case of a discrete POVM, {F(x)}x∈X . Suppose
that y1, . . . , yN are the outcomes of measurements on N identical copies of the state ρ ∈ Q.
One estimate for the outcome probabilities is then

p̂(x) = p̂(x; y1, . . . , yN) := 1

N

N∑
k=1

δ(x, yk), (4.2)

which gives

ρ̂ = ρ̂(y1, . . . , yN) :=
∑
x∈X

p̂(x; y1, . . . , yN)Q(x), (4.3)

for an estimate of ρ. We will call ρ̂ a linear tomographic estimate of ρ to distinguish it from
more sophisticated choices, such as those from maximum likelihood estimation [17, 18] or
Bayesian mean estimation [19–23].

The mean-squared Hilbert–Schmidt distance provides a measure of the expected error in
our estimate,

e(F,Q)(ρ) : = E
y1,...,yN

[‖ρ − ρ̂(y1, . . . , yN)‖2] (4.4)

=
∑

x,y∈X

E
y1,...,yN

[(p(x) − p̂(x))(p(y) − p̂(y))](Q(x)|Q(y)) (4.5)

= 1

N

( ∑
x∈X

p(x)(Q(x)|Q(x)) − tr(ρ2)

)
(4.6)

= :
1

N
(	p(Q) − tr(ρ2)), (4.7)

using equation (4.1) and given that

E
y1,...,yN

[(p(x) − p̂(x))(p(y) − p̂(y))] = 1

N
(p(x)δ(x, y) − p(x)p(y)), (4.8)

which is an elementary calculation. Equation (4.7) is also a fitting description of the error for
a POVM with a continuum of measurement outcomes if we define

	p(Q) :=
∫

X
dp(x)(Q(x)|Q(x)) (4.9)

in general. This is because a countable partition of the outcome set X allows any POVM to
be approximated by a discrete POVM. Our estimate p̂ remains a good approximation for the
probability measure p, except now with x and y1, . . . , yN in equation (4.2) indicating members
of the partition. In the limit of finer approximating partitions we again arrive at equation (4.7)
for the average error, but now with equation (4.9) for 	p(Q). Since we have no control over
the purity of ρ, it is this quantity which is now of interest.

The POVM which minimizes 	p(Q), and hence the error, will depend on the quantum
state under examination. When Q = Q(CD) it is natural to remove this dependence by
averaging over all Hilbert-space orientations between the system and measurement apparatus.
That is, we set ρ = ρ(σ,U) := UσU † where σ ∈ Q(CD) is fixed, and average 	p(Q) over
random choices of U ∈ U(D). When Q = Qgc,Quc ⊆ Q(Hs ⊗ Ha) the natural procedure
is to average over all local Hilbert-space orientations Us ∈ U(d) between the system and
measurement apparatus, and all local Hilbert-space orientations Ua ∈ U(d) between the

8
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system and ancilla. The end result is the same, however. Setting ρ = ρ(σ,Us ⊗ Ua) =
(Us ⊗ Ua)σ (Us ⊗ Ua)

† we take the average over all Us, Ua ∈ U(d):∫ ∫
U(d)

dµ(Us) dµ(Ua)	p(Q) =
∫ ∫

U(d)

dµ(Us) dµ(Ua)

×
∫

X
tr[dF(x)(Us ⊗ Ua)σ (Us ⊗ Ua)

†](Q(x)|Q(x)) (4.10)

= 1

D

∫
X

tr[dF(x)]tr(σ )(Q(x)|Q(x)) (4.11)

= 1

D

∫
X

dτ(x)(Q(x)|Q(x)) (4.12)

= :
1

D
	τ(Q), (4.13)

where µ is the unit Haar measure, using Shur’s lemma for the integrals.
It would be presumptuous to take 	τ(Q) as an error estimate for an arbitrary subset

Q ⊆ Q(CD) without further information on its structure. Nevertheless, assume that there
is a natural set of possible ‘orientations’ O ⊆ U(D) between H = CD and the measuring
apparatus, and a probability measure ν on O , with the property that for any σ ∈ Q,∫

O
dν(U)UσU † = 1

D
I. (4.14)

Then
∫
O dν(U)	p(Q) = 	τ(Q)/D as above. We thus take O = U(d)⊗U(d) and ν = µ×µ

when Q = Qgc or Quc. Another example is

Qcl := {ρ ∈ Q(CD)| ρ is diagonal in the standard basis}. (4.15)

The members of Qcl might be described as ‘classical’ states, being convex combinations
of basis states: ρ = ∑

k rk|k〉〈k|. Under random permutations U of basis elements,
equation (4.14) is satisfied for any σ ∈ Qcl. In general, we suspect that the above averaging
of the error makes sense whenever Q is a convex subset of Q(CD), containing the completely
mixed state I/D, and possessing a symmetry about this state described by equation (4.14).

We now proceed to an analysis of optimality. The above considerations are summarized
as a definition,

e(F,Q)
av (σ ) :=

∫
O

dν(U) e(F,Q)(ρ(σ,U)) = 1

ND
(	τ (Q) − D tr(σ 2)). (4.16)

Our goal now is to find the optimal pairs (F,Q) which minimize e(F,Q)
av for a given fixed Q.

There are generally many different choices for the reconstruction OVD Q : X →
span(Q) that satisfy equation (4.1). Our next task is to show that the canonical choice we
encountered in section 3 is uniquely optimal. We thus minimize 	τ(Q) over all Q while
keeping F fixed. Our only constraint is that our state-reconstruction formula (equation (4.1))
remains valid for all ρ ∈ Q. By linearity, this formula is then also valid for any member of
span(Q), and therefore,∫

X
|Q(x))(dF(x)|ΠQ =

∫
X

dτ(x)|Q(x))(P ′(x)| = ΠQ, (4.17)

where ΠQ projects onto span(Q) and |P ′) := ΠQ|P). This means {Q(x)}x∈X is a dual
frame to the frame {P ′(x)}x∈X , w.r.t. τ , within the subspace span(Q). Consult Christensen

9
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[24] for an introduction to frame theory (see also [5]). The following lemma shows that there
is a unique canonical dual frame which is optimal (see [5, lemma 16] for a proof).

Lemma 4.1. Let {A(x)}x∈X be an operator frame w.r.t. the measure α. Then for all dual
frames {B(x)}x∈X ,∫

X
dα(x)(B(x)|B(x)) �

∫
X

dα(x)(Ã(x)|Ã(x)), (4.18)

with equality only if B = Ã, α-almost everywhere, where {Ã(x)}x∈X is the canonical dual
frame, i.e., |Ã) := A−1|A) with A := ∫

X dα(x)|A(x))(A(x)|.
Let F̃ ′ be the inverse of F ′ := ΠQFΠQ in the subspace span(Q) and define |R′) :=

F̃ ′|P ′). This means

F̃ ′ =
∫

X
dτ(x)|R′(x))(R′(x)|. (4.19)

Lemma 4.1 shows that

	τ(Q) � 	τ(R
′) = Tr(F̃ ′), (4.20)

with equality only if Q = R′, τ -almost everywhere. We thus make this choice and now
minimize the quantity Tr(F̃ ′) over all POVMs. Define δ′ := dim span(Q).

Lemma 4.2. Let F : B(X ) → H(CD) be a POVM which is informationally complete w.r.t.
Q ⊆ Q(CD), where ri(Q) �= ∅ and I ∈ span(Q). Then

Tr(F̃ ′) � (δ′ − 1)2

D − 1
+ 1, (4.21)

with equality if and only if

F = D − 1

δ′ − 1
ΠQ +

δ′ − D

(δ′ − 1)D
|I )(I |. (4.22)

Proof. Since F is informationally complete w.r.t. Q and ri(Q) �= ∅, by proposition 3.2, we
must have supp(F) � span(Q). Thus F ′ = ΠQFΠQ has δ′ nonzero left–right eigenvalues:
λ1, . . . , λδ′ > 0. One eigenvalue is fixed at unity, however, since F ′|I ) = ΠQFΠQ|I ) = |I )

when |I ) ∈ span(Q), given that |I ) is always an eigenvector of F (equation (3.14)). We thus
take λ1 = 1. The remaining eigenvalues satisfy

δ′∑
k=2

λk = Tr(F ′) − 1 � Tr(F) − 1 � D − 1, (4.23)

given that Tr(F ′) = Tr(ΠQF) � Tr(F), with equality if and only if supp(F) = span(Q),
and Tr(F) � D, with equality if and only if F is a rank-1 POVM. Under this constraint, it is
straightforward to show that

Tr(F̃ ′) =
δ′∑

k=2

1

λk

+ 1 (4.24)

takes its minimum value if and only if λ2 = · · · = λδ′ = (D − 1)/(δ′ − 1), or equivalently,

F ′ = D − 1

δ′ − 1

(
ΠQ − 1

D
|I )(I |

)
+

1

D
|I )(I |. (4.25)

Note that Tr(F ′) = D with this choice, however, which requires supp(F) = span(Q). We
must therefore have F ′ = F and equation (4.25) is equivalent to equation (4.22). Finally,
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the minimum value of equation (4.24) is Tr(F̃ ′) = (δ′ − 1) · ((δ′ − 1)/(D − 1)) + 1 =
(δ′ − 1)2/(D − 1) + 1. �

It is important to recognize that our condition for optimality (equation (4.22)) sets
supp(F) = span(Q). We now proceed under this assumption, effectively replacing each
primed symbol above by its unprimed counterpart. Furthermore, optimality requires a rank-1
POVM. This is because equation (4.22) gives Tr(F) = D, which is possible only for rank-1
POVMs. When Q = Q(CD) we recover the tight rank-1 IC-POVMs described in [5]. Let us
use the same terminology here.

Definition 4.3. Let F : B(X ) → H(CD) be a POVM. Then F is called tight if the OVD
{P0(x)}x∈X forms a tight operator frame w.r.t. τ in supp(F0), i.e.,

F0 :=
∫

X
dτ(x)|P0(x))(P0(x)| = aΠF0 , (4.26)

for some constant a > 0, or equivalently,

F = aΠF +
1 − a

D
|I )(I |. (4.27)

The constant satisfies a � (D−1)/(δ−1), where δ := rank(F) (left–right rank), with equality
only for rank-1 POVMs. Returning to equation (4.22) we see that tight rank-1 POVMs are
precisely those which are optimal for linear quantum state tomography. That is,

F = D − 1

δ − 1
ΠF +

δ − D

(δ − 1)D
|I )(I | (4.28)

if and only if F is a tight rank-1 POVM. The optimal state-reconstruction formula is given by
equation (3.11), which now takes the form

ρ = δ − 1

D − 1

∫
X

dp(x)P (x) − δ − D

D(D − 1)
I, (4.29)

since a straightforward calculation of F̃ from equation (4.28) shows that

R = δ − 1

D − 1
P − δ − D

D(D − 1)
I. (4.30)

We now restate our findings in a theorem.

Theorem 4.4. Let F : B(X ) → H(CD) be a POVM which is informationally complete w.r.t.
Q ⊆ Q(CD), assumed convex and containing I/D, and let δ′ = dim span(Q). Then for any
fixed quantum state σ ∈ Q,

e(F,Q)
av (σ ) � 1

ND

(
(δ′ − 1)2

D − 1
+ 1 − D tr(σ 2)

)
, (4.31)

for all reconstruction OVDs Q. Furthermore, equality occurs if and only if Q = R and F is a
tight rank-1 POVM with supp(F) = span(Q).

Now consider the worst-case error. The average provides a lower bound:

e(F,Q)
wc (σ ) := sup

U∈O
e(F,Q)(ρ(σ,U)) (4.32)

� e(F,Q)
av (σ ) (4.33)

� 1

ND

(
(δ′ − 1)2

D − 1
+ 1 − D tr(σ 2)

)
. (4.34)

11
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Returning to equation (4.7), however, but now with Q = R and ρ = ρ(σ,U) = UσU †, we
find

e(F,R)(ρ(σ,U)) = 1

N

( ∫
X

dp(x)(R(x)|R(x)) − tr(σ 2)

)
(4.35)

= 1

N

(
1

D

(
(δ − 1)2

D − 1
+ 1

) ∫
X

dp(x) − tr(σ 2)

)
(4.36)

= 1

ND

(
(δ − 1)2

D − 1
+ 1 − D tr(σ 2)

)
, (4.37)

when R satisfies equation (4.30) and P is rank 1, regardless of orientation U ∈ O ⊆ U(D).
Thus given δ = δ′ [supp(F) = span(Q)] when e(F,Q)

av is minimized, the following is a
consequence.

Corollary 4.5. Let F : B(X ) → H(CD) be a POVM which is informationally complete w.r.t.
Q ⊆ Q(CD), assumed convex and containing I/D, and let δ′ = dim span(Q). Then for any
fixed quantum state σ ∈ Q,

e(F,Q)
wc (σ ) � 1

ND

(
(δ′ − 1)2

D − 1
+ 1 − D tr(σ 2)

)
, (4.38)

for all reconstruction OVDs Q. Furthermore, equality occurs if and only if Q = R and F is a
tight rank-1 POVM with supp(F) = span(Q).

Tight rank-1 POVMs are thus optimal for linear quantum state tomography in both an
average and worst-case sense. In fact, they form the unique class of POVMs that achieve

e(F,R)
wc (σ ) = e(F,R)

av (σ ) = e(F,R)(ρ(σ,U)) = 1

ND

(
(δ′ − 1)2

D − 1
+ 1 − D tr(σ 2)

)
. (4.39)

The exact structure of these POVMs for Q = Qgc and Q = Quc, when they exist, will be
explored in detail in section 6. To do so, however, we first need to explain the concept of
a ‘unitary t-design’. This is done in the following section. When Q = Q(CD) we recover
the results of [5, theorem 18 and corollary 19]. Lastly, consider Q = Qcl. Only δ′ = D

dimensions are then spanned, giving
(
1 − tr(σ 2)

)
/N for the minimum error. In particular, for

pure states this is zero.

5. Unitary t-designs

The extension of spherical t-designs [7] to the unitary group was recently considered by
Dankert et al [10] and Gross et al [11], and the following definition is equivalent to theirs.
By a ‘unitary t-design’, however, we really mean a projective unitary t-design, in that each
eiφU ∈ U(d) should always be identified with U. With this in mind, let U(x) ∈ U(d) denote
a representative from the equivalence class of unitaries x ∈ PU(d) = U(d)/U(1) and let µ

denote the Haar measure on PU(d) with the normalization µ(PU(d)) = 1. A countable set
S endowed with a weight function w : S → (0, 1], where

∑
x∈S w(x) = 1, will be called

a weighted set and denoted by the pair (S , w).

Definition 5.1. A finite weighted set (D, w),D ⊂ PU(d), is called a weighted t-design (in
dimension d) if ∑

x∈D

w(x)U(x)⊗t ⊗ (U(x)⊗t )† =
∫

PU(d)

dµ(x)U(x)⊗t ⊗ (U(x)⊗t )†. (5.1)

12
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When w(x) = 1/|D | we recover the more common notion of an ‘unweighted’ t-design.
Define T := ∑

j,k |j 〉〈k| ⊗ |k〉〈j |, which satisfies tr[(A ⊗ B)T ] = tr(AB) and is called
the swap (or transposition) since T |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉. By multiplying equation (5.1)
on the right by I⊗(t−1) ⊗ T ⊗ I⊗(t−1) and tracing out the inner pair of subsystems, we
can immediately deduce that every weighted t-design is also a weighted (t − 1)-design.
Repeating this process t times shows that the normalization of w is in fact already implied by
equation (5.1). Unweighted t-designs in PU(d) exist for every t and d:

Theorem 5.2 (Seymour and Zaslavsky [25]). Let  be a path-connected topological space
endowed with a measure ω that is finite and positive with full support and let f :  → Rm be
a continuous, integrable function. Then there exists a finite set X ⊆  such that

1

|X |
∑
x∈X

f (x) = 1

ω()

∫


dω(x)f (x). (5.2)

The size of X may be any number, with a finite number of exceptions.

Corollary 5.3. For each pair of positive integers t and d, and for all sufficiently large n, there
exist (unweighted) unitary t-designs in dimension d of size n.

Proof. Simply let  = PU(d), ω = µ, and apply theorem 5.2 to

f (x) := U(x)⊗t ⊗ (U(x)⊗t )†, (5.3)

which maps PU(d) into End(Cd)⊗2t ∼= R2d4t

. �

The task of finding t-designs is facilitated by the following theorem. Define the positive
constant

γ (t, d) :=
∫

PU(d)

dµ(x)|tr[U(x)]|2t . (5.4)

Theorem 5.4. For any finite weighted set (S , w),S ⊂ PU(d), and any t � 1,∑
x,y∈S

w(x)w(y)|tr[U(x)†U(y)]|2t � γ (t, d), (5.5)

with equality if and only if (S , w) is a weighted t-design.

Proof. Defining S := ∑
x∈S w(x)U(x)⊗t ⊗ (U(x)⊗t )† − ∫

PU(d)
dµ(x)U(x)⊗t ⊗ (U(x)⊗t )†

we see that

0 � tr(S†S) =
∑

x,y∈S

w(x)w(y)|tr[U(x)†U(y)]|2t − 2
∑
x∈S

w(x)

∫
PU(d)

dµ(y)|tr[U(x)†U(y)]|2t

+
∫

PU(d)

dµ(x)

∫
PU(d)

dµ(y)|tr[U(x)†U(y)]|2t (5.6)

=
∑

x,y∈S

w(x)w(y)|tr[U(x)†U(y)]|2t −
∫

PU(d)

dµ(x)|tr[U(x)]|2t (5.7)

with equality if and only if S = 0, which is the defining property of a t-design. �

This theorem allows us to check whether a weighted subset of PU(d) forms a t-design
by considering only the ‘angles’ between the supposed design elements. It also shows that
t-designs can be found numerically by parametrizing a weighted set and minimizing the LHS
of equation (5.5). The lower bound can be considered a variation on the Welch bound [26].
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The constant γ was calculated by Diaconis and Shahshahani [27] for d � t , in which case
γ (t, d) = t!, and by Rains [28] in general. It is the number of permutations σ ∈ St (the
symmetric group [29]) such that (σ (1), σ (2), . . . , σ (t)) has no increasing subsequence of
length greater than d. Thus, for example, γ (1, d) = 1 and γ (2, d) = 2 for all d � 2.

A unitary 1-design must satisfy∑
x∈D

w(x)U(x) ⊗ U(x)† =
∫

PU(d)

dµ(x)U(x) ⊗ U(x)† = 1

d
T , (5.8)

where the RHS of equation (5.1) is now explicitly evaluated (simply consider a matrix
component of the integral in the standard product basis and use Schur’s lemma). Since T
has eigenvalues of 1 and −1, respectively, on the symmetric and antisymmetric subspaces
of Cd ⊗ Cd , and thus rank(T ) = d2, we must have |D | � d2 with equality only if D is
an (orthogonal) unitary operator basis, i.e. tr[U(x)†U(y)] = 0 for all x �= y ∈ D , and
w(x) = 1/|D |. This fact is more apparent when equation (5.8) is rewritten in terms of
superoperators ∑

x∈D

w(x)|U(x))(U(x)| = 1

d
I. (5.9)

In this form it is clear that unitary 1-designs are equivalent to tight unitary frames [5, 30]. The
unitary operators with matrix elements [30]

〈j |Um|k〉 := 1√
d

exp

[
2π ijk

d
+

2π i(j + kd)m

n

]
, (5.10)

for m = 0, . . . , n − 1, provide explicit examples of (unweighted) unitary 1-designs for all
n = |D | � d2.

To treat the general case, for an arbitrary permutation σ ∈ Sn, define the permutation
operator

P(σ) = Pσ(1)σ (2)···σ(n) :=
∑

j1,j2,...,jn

|j1〉〈jσ(1)| ⊗ |j2〉〈jσ(2)| ⊗ · · · ⊗ |jn〉〈jσ(n)|, (5.11)

which acts on (Cd)⊗n by permuting its subsystems accordingly,

Pk1k2...kn
|ψk1〉 ⊗ |ψk2〉 ⊗ · · · ⊗ |ψkn

〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉, (5.12)

and in terms of operators,

Pk1k2...kn

(
Ak1 ⊗ Ak2 ⊗ · · · ⊗ Akn

)
Pk1k2...kn

† = A1 ⊗ A2 ⊗ · · · ⊗ An. (5.13)

The composition of permutation operators then follows that for permutations, P(σ)P (τ) =
P(στ), which means P(σ)† = P(σ−1). Note that P21 = T .

In general, the RHS of equation (5.1) can be integrated explicitly using group theoretical
methods [31, 32]. The result is∫

PU(d)

dµ(x)U(x)⊗t ⊗ (U(x)⊗t )† =
∑

σ,τ∈St

Wg(d, t, σ τ−1)Pτ(1)+t,...,τ (t)+t,σ−1(1),...,σ−1(t),

(5.14)

where

Wg(d, t, σ ) := 1

t!2

∑
λ�t

l(λ)�d

χλ(1)2χλ(σ )

sλ,d(1)
(5.15)

is called the Weingarten function. Here the sum is over all partitions λ = (λ1, . . . , λt )

of the integer t (i.e. nonincreasing sequences of non-negative integers summing to t) with
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length l(λ) � d, where l(λ) := maxλj >0 j . The character on the conjugacy class Kλ of St

corresponding to λ � t is denoted by χλ and we take sλ,d(1) = sλ,d(1, . . . , 1) for the Schur
function sλ,d(x1, . . . , xd) [29]. For any partition λ � t one has

sλ,d(1) = 1

t!

∑
µ�t

dl(µ)χλ(µ)|Kµ|, (5.16)

and in particular, s(1,1),d (1) = d(d + 1)/2 and s(2,0),d (1) = d(d − 1)/2. This means
Wg(d, 2, (1, 1)) = 1/(d2 − 1) and Wg(d, 2, (2, 0)) = −1/d(d2 − 1), giving∫

PU(d)

dµ(x)U(x) ⊗ U(x) ⊗ U(x)† ⊗ U(x)†

= 1

d2 − 1
(P3412 + P4321) − 1

d(d2 − 1)
(P4312 + P3421) . (5.17)

Thus our definition of a unitary 2-design [equation (5.1)] can be rewritten as∑
x∈D

w(x)U(x) ⊗ U(x) ⊗ U(x)† ⊗ U(x)†

= 1

d2 − 1
(P3412 + P4321) − 1

d(d2 − 1)
(P4312 + P3421) . (5.18)

The following is partly due to Gross et al [11, theorem 2].

Theorem 5.5. Let (D, w),D ⊂ PU(d), be a weighted 2-design. Then

|D | � (d2 − 1)2 + 1, (5.19)

with equality only if w(x) = 1/|D | and

|tr[U(x)†U(y)]|2 = 1 − 1

d2 − 1
, (5.20)

for all x �= y ∈ D .

Proof. Multiplying equation (5.18) on the left by P2341 and on the right by P2341
† = P4123

implies∑
x∈D

w(x)U(x)† ⊗ U(x) ⊗ U(x) ⊗ U(x)†

= 1

d2 − 1
(P3412 + P2143) − 1

d(d2 − 1)
(P3142 + P2413) , (5.21)

given equation (5.13) and since, for example, P2341P3412P4123 = P2341P2341 = P3412. Now
multiply this equation on the right by A ⊗ I ⊗ I , where A ∈ End(Cd) ⊗ End(Cd), and trace
out the first pair of subsystems. The result can be written in terms of a superoperator

S(A) :=
∑
x∈D

w(x) tr[(U(x)† ⊗ U(x))A]U(x) ⊗ U(x)† (5.22)

= A + tr(AT )T

d2 − 1
− (I ⊗ tr1(AT ))T + (tr2(AT ) ⊗ I )T

d(d2 − 1)
, (5.23)

by rewriting the permutation operators explicitly in terms of their definition [equation (5.11)]
and simplifying.

Now let {Ek}d2−1
k=0 be an orthonormal operator basis for End(Cd) with the choice

E0 = I/
√

d . The remaining operators E1, . . . , Ed2−1 then span the (d2 − 1)-dimensional
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subspace of traceless operators tr(Ek) = √
d tr(E†

0Ek) = 0 for all k > 0. Consider the action
of S on (Ej ⊗ Ek)T :

S((Ej ⊗ Ek)T ) = 1

d2 − 1
((Ej ⊗ Ek)T + d2δj0δk0(E0 ⊗ E0)T

− δj0(E0 ⊗ Ek)T − δ0k(Ej ⊗ E0)T ) (5.24)

=

⎧⎪⎨
⎪⎩

(E0 ⊗ E0)T , j = k = 0;
(Ej ⊗ Ek)T /(d2 − 1), j, k > 0;
0, otherwise,

(5.25)

identifying I = √
dE0. Thus the d4 orthonormal operators (Ej ⊗ Ek)T diagonalize S and,

in particular, rank′(S) = (d2 − 1)2 + 1 (ordinary rank). But we must have |D | � rank′(S),
which is equation (5.19).

If |D | = rank′(S) then {U(x) ⊗ U(x)†}x∈D is necessarily a linearly independent set.
Fixing y ∈ D and considering S(U(y) ⊗ U(y)†) shows that

(d2 − 1)
∑
x∈D

w(x)|tr[U(x)†U(y)]|2U(x) ⊗ U(x)† = U(y) ⊗ U(y)† +

(
d − 2

d

)
T , (5.26)

which, upon setting T = d
∑

x∈D w(x)U(x) ⊗ U(x)† (equation (5.8)), can be rewritten as

{((d2 − 1)2 + 1)w(y) − 1}U(y) ⊗ U(y)†

+
∑
x �=y

w(x){(d2 − 1)|tr[U(x)†U(y)]|2 − d2 + 2}U(x) ⊗ U(x)† = 0. (5.27)

When |D | = (d2−1)2+1 linear independence thus requires (d2−1)|tr[U(x)†U(y)]|2 = d2−2
for all x �= y and ((d2 − 1)2 + 1)w(y) = |D |w(y) = 1. The same is true for all y ∈ D . �

In general, for each positive integer t and d, we would like to know the quantity N(t, d),
which we use to denote the minimum number of unitaries needed to construct a weighted
t-design in PU(d), or less ambitiously, bounds on this quantity. This is a difficult problem. A
general lower bound, however, might be obtainable from the theory of Levenshtein [33, 34].

Our own numerical searches have not revealed the existence of 2-designs achieving
|D | = (d2 − 1)2 + 1 and Gross et al [11] have conjectured their nonexistence. If such designs
did exist then they might be dubbed tight designs, which is standard terminology in the theory
of t-designs [7] (but unrelated to the concept of tight frames). As noted in theorem 5.5, tight
PU(d) 2-designs are necessarily equiangular. They are analogous to tight CP d−1 2-designs,
i.e. symmetric informationally complete POVMs (SIC-POVMs) [35], which in contrast are
conjectured to exist in all dimensions. The analogy to a complete family of mutually unbiased
bases (MUBs) [36, 37], however, does exist in certain dimensions.

A subset {Uj }d2−1
j=0 ⊂ U(d) is a unitary operator basis for End(Cd) if tr

(
Uj

†Uk

) = dδjk

for all 0 � j, k � d2 − 1. In analogy with the case of vector bases, we call a pair of unitary
operator bases, {Uj }d2−1

j=0 and {Vk}d2−1
k=0 , mutually unbiased if∣∣tr(Uj

†Vk

)∣∣2 = 1 (5.28)

for all 0 � j, k � d2 − 1. Define the embedding ϑ : U(d) ↪→ Huc
0

∼= R(d2−1)2
by

|ϑ(U)) := Π0||U 〉〈U |) = ||U 〉〈U | − I/d2), (5.29)

where |U 〉〈U |,Π0 and Huc
0 are defined in equations (2.2), (2.14) and (2.17), respectively. The

set {ϑ(Uj )}d2−1
j=0 then specifies the vertices of a regular simplex in the (d2 − 1)-dimensional
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subspace of Huc
0 for which its members span. Mutually unbiased bases correspond to

orthogonal subspaces,

(ϑ(Uj )|ϑ(Vk)) = |〈Uj |Vk〉|2 − 1

d2
= 1

d2

∣∣tr(Uj
†Vk

)∣∣2 − 1

d2
= 0, (5.30)

of which, there can be at most
(

dim Huc
0

)/
(d2 − 1) = d2 − 1 many. A set of d2 − 1 unitary

operator bases with the property that each pair is mutually unbiased is thus called a complete
set of mutually unbiased unitary-operator bases (MUUBs).

Now consider an arbitrary family of subsets, B0, . . . ,Bm−1 ⊂ PU(d), where each

member Ba = {
ea
j

}d2−1
j=0 specifies a unitary operator basis

{
U

(
ea
j

)}d2−1
j=0 and is appointed a

positive weight wa . By theorem 5.4, if
m−1∑
a,b=0

wawb

d2−1∑
j,k=0

∣∣tr[U(
ea
j

)†
U

(
eb
k

)]∣∣4 = 2, (5.31)

then their union D = ∪aBa forms a weighted 2-design with weight w(x) = ∑
a wa1Ba

(x).
In the context of quantum process tomography it is desirable for the weight to remain constant
across elements of the same basis (so the POVM that the design specifies can be implemented
by a series of orthogonal measurements). We have thus made this a requirement. The set
indicator function, 1S (x) := 1 if x ∈ S and 0 otherwise, is used to take care of any
multiplicity across different bases. Note that the normalization of w(x) implies normalization
of the basis weights:

∑
a wa = 1/d2.

It is straightforward to confirm (via equation (5.31)) that a complete set of MUUBs forms
a unitary 2-design when wa = 1/md2. The following theorem shows that such sets are
optimal, in that we always need m � d2 − 1 unitary operator bases to construct a weighted
2-design, with equality only if the bases are mutually unbiased.

Theorem 5.6. Let d > 1 and let B0, . . . ,Bm−1 ⊂ PU(d) specify a family of unitary operator
bases for End(Cd), where the union D = ∪aBa forms a weighted 2-design with weight
function w(x) = ∑

a wa1Ba
(x) for some choice of basis weights w0, . . . , wm−1 > 0. Then

m � d2 − 1 with equality only if wa = 1/md2 for all a and the bases are pairwise mutually
unbiased.

Proof. Theorem 5.5 with |D | = md2 immediately shows that we require m � d2 − 2 + 2/d2,
which means m � d2 − 1 whenever d > 1. In the case of equality, note that by theorem 5.4
(or equation (5.31)) we require

d6
∑

a

wa
2 +

∑
a �=b

wawb

∑
j,k

(
λab

jk

)2 = 2, (5.32)

where we have defined the positive numbers λab
jk := ∣∣tr[U(

ea
j

)†
U

(
eb
k

)]∣∣2
. Moreover,

theorem 5.4 implies that the LHS of equation (5.32) is minimal with respect to the variables
wa and λab

jk under the appropriate constraints, two of which are
∑

a wa = 1/d2 and∑
j,k

λab
jk =

∑
j,k

∣∣(U(
ea
j

)|U(
eb
k

)
)
∣∣2 = d2 Tr(I · I) = d4, (5.33)

since all unitary operator bases satisfy
∑

j |U(ej ))(U(ej )| = dI. We will now minimize the

LHS of equation (5.32) under these two constraints. The minimum of
∑

j,k

(
λab

jk

)2
subject to

equation (5.33) occurs only when λab
jk = 1 for all 0 � j, k � d2 − 1, i.e., when Ba and Bb

are mutually unbiased. Then the LHS of equation (5.32) reduces to

d6
∑

a

w2
a + d4

∑
a �=b

wawb = d4(d2 − 1)
∑

a

w2
a + 1, (5.34)
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and here the minimum (under
∑

a wa = 1/d2) occurs only when wa = 1/md2 for all
0 � a � m − 1. With this value, equation (5.34) reduces to the RHS of equation (5.32)
when m = d2 − 1. Equality in equation (5.32) thus requires the bases to be pairwise mutually
unbiased and wa = 1/md whenever m = d2 − 1. �

Theorem 5.6 is the equivalent of ([38, theorem 3.2] for the case of unitary designs. Many
examples of unweighted unitary 2-designs were described by Gross et al [11]. Of these,
the Clifford designs were found closest to optimal. These are sets of unitary operator bases
which form subgroups of the projective Clifford group PC(d) [39, 40] and have cardinalities
|D | = kd2(d2 − 1) for some integer k. When k = 1, Clifford designs are known to exist in
dimensions d = 2, 3, 5, 7, 11 [41]. By theorem 5.6, each of these examples must be the union
of a complete set of MUUBs. Although no unweighted unitary 2-designs of smaller size were
found by Gross et al [11], weighted unitary 2-designs can surpass this record. This is the case
for PU(2) 2-designs, which are described in detail next.

5.1. PU(2) t-designs

In dimension 2, unitary designs are equivalent to real projective designs, which in turn are
equivalent to antipodal spherical designs. To see this, simply note that PU(2) ∼= RP 3 through
the relation

eiφU = r0I + i(r1X + r2Y + r3Z), (5.35)

where X := (0 1
1 0

)
, Y := (0 −i

i 0

)
and Z := ( 1 0

0 −1

)
are the Pauli matrices. Each unit vector

(r0, r1, r2, r3) ∈ R4 specifies a line in RP 3, and through equation (5.35), an equivalence class
of unitaries U ∈ U(2) differing only be a phase factor. Under this map each t-design in
PU(2) gives a t-design in RP 3 and vice versa. This is because distances are preserved:
|tr(U †V )|2 = 4〈r|s〉2 where 〈r|s〉 := ∑

k rksk and r (respectively, s) corresponds to U
(respectively, V ) through equation (5.35). Theorem 5.4 then transforms to the equivalent
for real projective designs. This relationship also gives

γ (t, 2) = (2t)!

t!(t + 1)!
. (5.36)

Real projective designs are rarely studied in the literature. It is well known, however, that
t-designs in RP n−1 are equivalent to antipodal (2t + 1)-designs in Sn−1 with twice as many
points (assuming antipodal pairs are appointed the same weight). The antipodal points of the
spherical design are simply the intersections between the lines of the real projective design
and the unit sphere. Additionally, an antipodal spherical (2t + 1)-design can be created from
(2t)-design by simply appending the antipodal points to the design: if D is a (2t)-design in
Sn−1 then D ∪ (−D) is an antipodal (2t + 1)-design in Sn−1.

The above relationships can be used to translate known results in the literature to the case
of unitary designs. For example, the lower bound of Delsarte et al [7] on the number of points
needed to construct a (2t + 1)-design in S3 shows that

|D | � 1
6 (t + 1)(t + 2)(t + 3) (5.37)

for a t-design in PU(2), with equality only if the design is unweighted [34], i.e. w(x) = 1/|D |.
A design which achieves this bound is generally called tight. It is known, however, that tight
S3 (2t + 1)-designs exist only for the trivial t = 1 case [7, 42, 43] (see [44] for a summary).
Thus we can increase the RHS of equation (5.37) by 1 when t > 1. Further bounds on the
cardinality of a PU(2) t-design are summarized in table 1.
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Table 1. Known bounds on N(t, 2), the minimum cardinality of a weighted t-design in PU(2).
The Delsarte lower bound (equation (5.37)) is included as a reference point, and for completeness,
bounds on the minimum cardinality for an unweighted design are included in parentheses.

t Delsarte N(t, 2) � N(t, 2) �
2 10 11a (12b) 11c (12d)
3 20 21a 23e (24f)
4 35 37g 43e

5 56 60g 60h

6 84 85a (89i)
7 120 134g 264j

8 165 166a (180i)
9 220 250g 360k

10 286 287a (318i)

a No tight S3(2t + 1)-designs exist for t > 1 [7, 42, 43].
b No antipodal unweighted 22-point S3 5-designs exist [45].
c A weighted 11-point PU(2) 2-design exists [equation (5.38)].
d The 24 vertices of the 24-cell form an antipodal unweighted S3 5-design [46], and thus also an
unweighted PU(2) 2-design. This design is a minimal subgroup of PC(2).
e A weighted 23-point S3 6-design and a weighted 43-point S3 8-design exist [47].
f The projective Clifford group PC(2) is an unweighted PU(2) 3-design. The corresponding S3

7-design is formed by the vertices of 2 copies of the 24-cell [46].
g The linear programming bounds for weighted S3(2t + 1)-designs of [48].
h The 120 vertices of the 600-cell form an antipodal unweighted S3 11-design. This is the unique
minimal unweighted S3 11-design [49, 50].
i Yudin’s bound [51] on unweighted spherical designs gives |D | � π/(π−2x

√
1 − x2−2 arcsin x)

for unweighted PU(2) t-designs, where x is the largest zero of the Jacobi polynomial P
(3/2,3/2)

2t+1 (x).
j An antipodal weighted 528-point S3 15-design can be constructed from shells of a Euclidean
lattice [48].
k The union of the 120 vertices and the 600 face centres of the 600-cell form a weighted antipodal
S3 19-design [52]. The vertices have weight 1/504 and the faces have weight 2/1575.

The first row of table 1 corresponds to t = 2, which we now explain in detail. The
Delsarte bound (equation (5.37)) shows that PU(2) 2-designs must have at least ten points.
However we can increase this bound to 11 since there are no tight PU(2) 2-designs. The 11
columns of the matrix⎡

⎢⎢⎣
1 0 0 0 0 a a a a a a

0 a −a a a b −b 0 0 0 0
0 a a −a a 0 0 b −b 0 0
0 a a a −a 0 0 0 0 b −b

⎤
⎥⎥⎦ , (5.38)

where a = 1/
√

3 and b = √
2/3, specify a weighted PU(2) 2-design (through

equation (5.35)) which achieves the bound. The weight appointed to the first column is
1/16 while the remaining all have weight 3/32. Reznick [45] has shown that there are no
antipodal unweighted S3 5-designs with 22 points. Thus this design is necessarily weighted.
The 24 vertices of the 24-cell form an antipodal unweighted S3 5-design [46], and thus also
an unweighted PU(2) 2-design with 12 points. The elements of this design correspond to
the subgroup 〈HR,R2〉 of the Clifford group C(2) = 〈H,R〉, where H = 1√

2

( 1 1
1 −1

)
and

R = (1 0
0 i

)
. It is formed by the union of a complete set of MUUBs and is the first in the family

of Clifford designs.
Finally, Shamsiev’s explicit constructions of antipodal weighted spherical designs [53,

theorem 1] show that weighted PU(2) t-designs with (t + 1)3/2 points exist for all odd t. This
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upper bound on the cardinality together with the Delsarte lower bound (equation (5.37)) means
that N(t, 2) = �(t3).

6. Optimal ancilla-assisted quantum process tomography

We now return to our immediate task of optimizing the measurements used for ancilla-
assisted quantum process tomography. Throughout this section we assume that either Q =
Q(Cd ⊗Cd),Qgc or Quc. The results of section 4 are first summarized for these specific cases.

Recall that our error for tomographic reconstructions of quantum states was defined in
terms of the Hilbert–Schmidt distance (equation (4.4)),

e(F,Q)(ρ) := E
y1,...,yN

[‖ρ − ρ̂(y1, . . . , yN)‖2], (6.1)

where ρ̂ is the linear tomographic estimate of ρ given N measurement outcomes y1, . . . , yN

(equations (4.2) and (4.3)). When applied to the output states of quantum channels, with fixed
input ρi = |I 〉〈I |, this distance measure naturally induces the analogous Hilbert–Schmidt
distance for superoperators (see the appendix),

‖E − Ê‖ = ‖ρ − ρ̂‖, (6.2)

where ρ = (E ⊗ I)(ρi) and ρ̂ = (Ê ⊗ I)(ρi) through the Jamiołkowski isomorphism
(equation (2.3)), and ‖S‖ :=

√
Tr(S†S) for any superoperator S. Although there are more

appropriate distance measures for quantum channels, which properly reflect the probabilistic
interpretation of a quantum state, the Hilbert–Schmidt distance is the most natural choice for
linear tomographic reconstructions of quantum states.

Now setting ρ = ρ(σ,U) := UσU † for some fixed output state σ ∈ Q, recall that we
defined the average (equation (4.16)) and worst-case (equation (4.32)) error over different
Hilbert-space orientations Us, Ua ∈ U(d),

e(F,Q)
av (σ ) :=

∫ ∫
U(d)

dµ(Us)dµ(Ua) e(F,Q)(ρ(σ,Us ⊗ Ua)); (6.3)

e(F,Q)
wc (σ ) := sup

Us,Ua∈U(d)

e(F,Q)(ρ(σ,Us ⊗ Ua)). (6.4)

Finally, recalling that the subsets Qgc and Quc respectively span δ′ = d2(d2 − 1) + 1 and
δ′ = (d2 − 1)2 + 1 dimensions of H(Cd ⊗ Cd), the following corollary restates theorem 4.4
and corollary 4.5 for these special cases of interest.

Corollary 6.1. Let F : B(X ) → H(Cd ⊗Cd) be a POVM which is informationally complete
w.r.t. Q ⊆ Q(Cd ⊗ Cd). Then for any fixed quantum state σ ∈ Q,

e(F,Q)
wc (σ ) � e(F,Q)

av (σ ) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

N
(d4 + d2 − 1 − tr(σ 2)), if Q = Q(Cd ⊗ Cd);

1

N
(d4 − d2 + 1/d2 − tr(σ 2)), if Q = Qgc;

1

N
(d4 − 3d2 + 3 − tr(σ 2)), if Q = Quc,

(6.5)

for all reconstruction OVDs Q. Furthermore, equality in the RHS of equation (6.5) occurs if
and only if Q = R and F is a tight rank-1 POVM with supp(F) = span(Q), in which case we
also have equality in the LHS of equation (6.5).
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Tight rank-1 POVMs thus describe the class of optimal measurements for linear ancilla-
assisted quantum process tomography in both an average and worst-case sense. But do such
measurements exist? When Q = Q(Cd ⊗ Cd), which is the class of output states of general
quantum operations (and included in corollary 6.1 for comparison), we recover the results of
[5]. Here it was found that tight rank-1 POVMs exist and are in fact equivalent to weighted
complex projective 2-designs.

Now consider the case Q = Quc. Our condition for a tight rank-1 POVM (equation (4.28))
with D = d2, δ = (d2 − 1)2 + 1 and

ΠF = ΠQuc = |λ0 ⊗ λ0)(λ0 ⊗ λ0| +
∑
j,k>0

|λj ⊗ λk)(λj ⊗ λk|, (6.6)

becomes

F =
∫

X
dτ(x)|P(x))(P (x)| = |λ0 ⊗ λ0)(λ0 ⊗ λ0| +

1

d2 − 1

∑
j,k>0

|λj ⊗ λk)(λj ⊗ λk|, (6.7)

using the orthonormal Hermitian operator basis {λk}d2−1
k=0 of section 2 (see above

equation (2.9)). Equivalently, under the isomorphism |A)(B| ↔ A ⊗ B† we can rewrite
this last form as∫

X
dτ(x)P (x) ⊗ P(x) = (λ0 ⊗ λ0) ⊗ (λ0 ⊗ λ0) +

1

d2 − 1

∑
j,k>0

(λj ⊗ λk) ⊗ (λj ⊗ λk).

(6.8)

Now multiplying on the left by P1432, taking the trace, and applying the easily confirmed
identity tr[P1432(A⊗B ⊗C ⊗D)] = tr(A) tr(C) tr(BD), we find that the types of tight rank-1
POVMs corresponding to Quc must satisfy∫

X
dτ(x) trs[{tra[P(x)]}2] = d. (6.9)

We know that trs[{tra[P ]}2] � 1/d, however, with equality only if P = |U 〉〈U | (via
equation (2.2)), a maximally entangled state. Thus, since the normalization

∫
X dτ(x) =

D = d2 must be adhered to, equation (6.9) can be satisfied only if P(x) = |U(x)〉〈U(x)|,
τ -almost everywhere, for some function U : X → U(d).

We have established that all tight rank-1 POVMs corresponding to Quc have POVDs in
the form P(x) = |U(x)〉〈U(x)| where U : X → U(d). It is thus natural to take X ⊆ PU(d)

and let U(x) denote a representative from the equivalence class of unitaries x ∈ PU(d) (as in
section 5). We will henceforth assume that this is the case. Now note that Tr(F2) = 2 under
equation (6.7). This means

1

d4

∫ ∫
X

dτ(x) dτ(y)|tr[U(x)†U(y)]|4 = 2, (6.10)

given that |(P (x)|P(y))|2 = |〈U(x)|U(y)〉|4 = |tr[U(x)†U(y)]|4/d4. In particular, if X is a
finite set, then by theorem 5.4, X must be a weighted unitary 2-design with weight function
w(x) = τ(x)/d2. In fact, theorem 5.4 could easily be extended to any subset X ⊆ PU(d)

with the condition for equality in equation (5.5) (when t = 2) replaced by equation (6.11) in
the following proposition (see, e.g., [5, theorem 6]).

Proposition 6.2. Let F : B(X ) → H(Cd ⊗Cd) be a POVM with supp(F) = span(Quc) and
assume X ⊆ PU(d). Then F is a tight rank-1 POVM if and only if P(x) = |U(x)〉〈U(x)|
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with the outcome distribution (X , τ/d2) satisfying

1

d2

∫
X

dτ(x)U(x)⊗2 ⊗ (U(x)⊗2)† =
∫

PU(d)

dµ(x)U(x)⊗2 ⊗ (U(x)⊗2)†. (6.11)

That is, if X is finite, then (X , τ/d2) is a weighted unitary 2-design.

Weighted unitary 2-designs thus define the class of optimal measurements on the
output state for linear ancilla-assisted process tomography of unital quantum channels.
Proposition 6.2 and corollary 6.1 summarize this main result of the paper. By corollary 5.3,
these measurements exist in all dimensions. One particularly interesting type is that specified
by a complete set of MUUBs. This choice allows us to perform optimal ancilla-assisted
process tomography through a series of orthogonal measurements on the output state. In all
cases, the optimal reconstruction formula for the output state is (equation (4.29) with D = d2

and δ = (d2 − 1)2 + 1)

ρ = (d2 − 1)

∫
X

dp(x)|U(x)〉〈U(x)| −
(

1 − 2

d2

)
I, (6.12)

where p(E ) = tr[F(E )ρ] = ∫
E dτ(x)〈U(x)|ρ|U(x)〉 are the measurement outcome

statistics. The corresponding unital channel follows from the Jamiołkowski isomorphism
(equation (2.3)),

E = (d2 − 1)

∫
X

dp(x)U(x) � U(x)† −
(

d − 2

d

)
I. (6.13)

Finally, consider the case Q = Qgc. Our condition for a tight rank-1 POVM
(equation (4.28)) with D = d2, δ = d2(d2 − 1) + 1 and ΠF = ΠQgc now becomes

F =
∫

X
dτ(x)|P(x))(P (x)| = |λ0 ⊗ λ0)(λ0 ⊗ λ0| +

1

d2

∑
j>0
k

|λj ⊗ λk)(λj ⊗ λk|. (6.14)

But following the exact same procedure as in the unital case we find that the types of tight
rank-1 POVMs corresponding to Qgc must also satisfy equation (6.9), and thus, we again have
P(x) = |U(x)〉〈U(x)|, τ -almost everywhere, for some function U : X → U(d). In this case
Tr(F2) = 2 − 1/d2 under equation (6.14), however, which would violate theorem 5.4. Our
only conclusion can be that tight rank-1 POVMs with supp(F) = span(Qgc) do not exist. The
lower bound on the error rate (equation (6.5)) still applies, but it is unattainable.

7. Conclusion

In this paper, we have shown that weighted unitary 2-designs specify optimal measurements
on the system-ancilla output state for ancilla-assisted process tomography of unital quantum
channels (corollary 6.1 and proposition 6.2). Although existence is known in all dimensions
(corollary 5.3), it remains to construct specific examples of these designs with sizes as close
as possible to the lower bound (theorem 5.5). Complete sets of MUUBs are known in
dimensions d = 2, 3, 5, 7, 11, and form unweighted unitary 2-designs with sizes close to
optimality. Each of these in fact specifies a minimal series of optimal orthogonal measurements
(theorem 5.6). Weighted unitary 2-designs of smaller size exist in dimension 2, however (see
table 1), and thus further reductions should be expected in higher dimensions. The optimization
of the measurements used for ancilla-assisted process tomography of general quantum channels
remains an open problem.
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Appendix. Quantum operations

Before describing quantum operations let us take a moment to set notation. Following Caves
[54] (see also [55, 56]) we write a linear operator A in vector notation as |A). The vector
space of all such operators, End(Cd) ∼= Cd2

, equipped with the Hilbert–Schmidt inner product
(A|B) := tr(A†B), is a Hilbert space, where we think of (A| as an operator ‘bra’ and |B) as
an operator ‘ket’. Addition and scalar multiplication of operator kets then follows that for
operators, e.g. a|A) + b|B) = |aA + bB). The usefulness of this notation becomes apparent
when we consider linear maps on operators, i.e. superoperators. Given an orthonormal operator
basis {Ek}d2

k=1 ⊂ End(Cd), (Ej |Ek) = δjk , a superoperator S ∈ End(End(Cd)) ∼= Cd4
may be

written in two different ways,

S =
∑
j,k

sjkEj � Ek
† =

∑
j,k

sjk|Ej)(Ek| (s ∈ Cd2×d2
). (A.1)

The first representation illustrates the ordinary action of the superoperator,

S(A) :=
∑
j,k

sjkEjAEk
†, (A.2)

which amounts to inserting A into the location of the ‘�’ symbol. The second reflects the
left–right action,

S|A) :=
∑
j,k

sjk|Ej)(Ek|A) =
∑
j,k

sjkEj tr
(
Ek

†A
)
, (A.3)

where the superoperator acts on operators just like an operator on vectors. The identity
superoperators relative to the ordinary and left–right actions are, respectively, I := I � I and
I := ∑

k |Ek)(Ek|. We also define Tr(S) := ∑
k(Ek|S|Ek) and ‖S‖ :=

√
Tr(S†S). The latter

is the Frobenius norm of S induced by its left–right action. Here S† is the left–right adjoint,
i.e., (A|S†|B) := (B|S|A)∗, and RS denotes the left–right composition of two superoperators
(RS)|A) := R|B) where |B) = S|A). Consult [54–56] for analogous concepts relative to the
ordinary action.

The particular choice of operator basis {Ek = Ek1k2 := |k1〉〈k2|}dk1,k2=1, where {|k〉}dk=1

is a fixed ‘standard’ basis for Cd , defines the so-called Jamiołkowski isomorphism [13]. The
matrix s in equation (A.1), now called the process matrix, then satisfies

sjk = sj1j2,k1k2 = d(〈j1| ⊗ 〈j2|)[(S ⊗ I)(|I 〉〈I |)](|k1〉 ⊗ |k2〉), (A.4)

where |I 〉 := ∑d
k=1 |k〉 ⊗ |k〉/√d. Note that Tr(S†S) = tr(s†s) in general, and thus, the

Hilbert–Schmidt superoperator distance between S and R can be rewritten as ‖S − R‖ =
‖s − r‖, where r and R are related through equation (A.1). The upshot of the current choice
of operator basis is that when S and R are quantum channels, as in this paper, then s and r
specify standard-basis matrix elements of output quantum states with fixed input |I 〉〈I |.

A superoperator S is called positive if it maps positive operators to positive operators
under its ordinary action. If, in addition, for any auxiliary system Cda we have (S⊗I)(A) � 0
whenever A � 0, A ∈ End(Cd ⊗ Cda), then S is called completely positive. Alternatively,
S is completely positive if and only if (A|S|A) � 0 for all A ∈ End(Cd) [57]. That is, S
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is completely positive if and only if S† = S and S has non-negative left–right eigenvalues.
Diagonalizing, we see that S is completely positive if and only if it can be rewritten in an
operator-sum form, called the Kraus representation [57–59],

S =
∑

k

Bk � Bk
† =

∑
k

|Bk)(Bk|, (A.5)

where the operators Bk ∈ End(Cd) are called Kraus operators. A superoperator S is said
to be trace nonincreasing if tr[S(A)] � tr(A) for all A, and moreover, trace preserving if
tr[S(A)] = tr(A) for all A. Thus the Kraus operators together satisfy

∑
k Bk

†Bk � I when S
is trace nonincreasing and

∑
k Bk

†Bk = I when S is trace preserving.
A quantum operation is a superoperator-valued measure E[·] : B(X ) → End(End(Cd))

on an outcome set X , which satisfies (1) E[S ] is completely positive and trace nonincreasing
for all S ∈ B(X ) with E[∅] = 0, (2) E[

⋃∞
k=1 Sk] = ∑∞

k=1 E[Sk] for any sequence of
disjoint sets Sk ∈ B(X ), and (3) E[X ] is trace preserving. In this paper, we always take
B(X ) to be the Borel σ -algebra. Quantum operations can be nonselective (e.g. channels), in
which case there is only one output ρ ′ = E(ρ) := E[X ](ρ) for each input ρ, but are generally
selective (e.g. measurements), in which case the output ρ ′ = E[S ](ρ)/p(S ) occurs with
probability p(S ) = tr(E[S ](ρ)). To make the connection to quantum measurements simply
note that F(·) := ∑

k Ak(·)†Ak(·) is the POVM describing the outcome statistics of the
measuring instrument E[·] = ∑

k Ak(·) � Ak(·)†.
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[32] Collins B and Śniady P 2006 Integration with respect to the Haar measure on unitary, orthogonal and symplectic

group Commun. Math. Phys. 264 773
[33] Levenshtein V 1998 On designs in compact metric spaces and a universal bound on their size Discrete Math.

192 251
[34] Levenshtein V 1998 Universal bounds for codes and designs Handbook of Coding Theory ed V Pless and

C W Huffman (Amsterdam: Elsevier) p 499
[35] Renes J M, Blume-Kohout R, Scott A J and Caves C M 2004 Symmetric informationally complete quantum

measurements J. Math. Phys. 45 2171
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